

ECENCAD5VBH

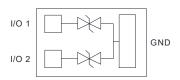
Low capacitance double bidirectional ESD protection diodes

The ECENCAD5VBH device is characterized by their low capacitance, low operating and clamping voltages, and fast response time. This makes it ideal for use as board level protection of sensitive semiconductor components. The dual-junction common-anode design allows the user to protect two bidirectional lines.

It has been specifically designed to protect sensitive components which are connected to data and transmission lines from overvoltage caused by ESD (electrostatic discharge), CDE (Cable Discharge Events), and EFT (electrical fast transients).

Features

- Ultra small package(FBP1006) for use in portable electronics
- ESD protection of two lines
- Low leakage current
- Low clamping voltage
- Response Time is < 1 ns
- Working voltages :5V
- Solid-state silicon avalanche technology
- Device Meets MSL 1 Requirements
- ROHS compliant


DFN1006-3L

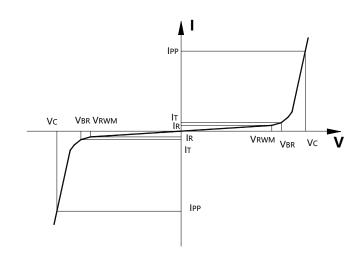
Main applications

- USB1.1/2.0 Data lines
- Industrial Controls
- Computers and peripherals
- Portable instrumentation
- Peripherals
- Notebook Computers
- Set-Top Box
- Projection TV
- Audio and video equipment
- Subscriber Identity Module (SIM) card protection

Ordering Information

Device	Qty per Reel	Reel Size	
ECENCAD5VBH	10000	7 Inch	

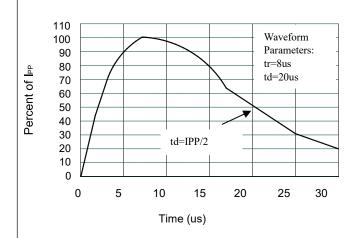
Maximum ratings (Tamb=25°C Unless Otherwise Specified)					
Parameter	Symbol	Value	Unit		
Peak Pulse Power (tp=8/20μs waveform)	Рррр	50	Watts		
Peak pulse current (tp=8/20μs waveform)	I_{PP}	3	A		
ESD Rating per IEC61000-4-2: Contact		8	1/3/		
Air		15	KV		
Lead Soldering Temperature	$T_{\rm L}$	260 (10 sec.)	${\mathbb C}$		
Operating Temperature Range	Tı	-55 ∼ 150	${\mathbb C}$		
Storage Temperature Range	Tstg	-55 ~ 150	${\mathbb C}$		

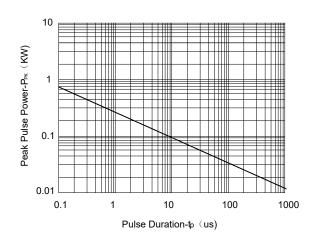

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

^{1.} Non-repetitive current pulse, per Figure 1.

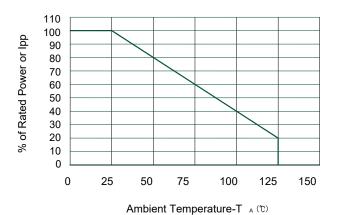
Electric	Electrical characteristics (Tamb=25°C Unless Otherwise Specified)						
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units	
Vrwm	Reverse Working Voltage	between I/O & GND pin			5.0	V	
Vpp	V _{BR} Breakdown Voltage	$I_T = 1 \text{mA},$	5.6		7.8	V	
V BK		between I/O & GND pin	3.0		7.8	V	
Ir		$V_{RWM} = 5V$,		1	1	4	
IR	Reverse Leakage Current	between I/O & GND pin			1 uA	1	uA
Va	Vc Clamping Voltage	$I_{PP} = 3A$, $tp = 8/20 \mu s$,			15	V	
vc		any I/O pin to Ground					
C _J Junction Capacitance	$V_R = 0V$, $f = 1MHz$,		7.0	12	pF		
	between I/O & GND pin						

Junction capacitance is measured in VR=0V,F=1MHz


Symbol	Parameter
Vrwm	Working Peak Reverse Voltage
V _{BR}	Breakdown Voltage @ IT
V _C	Clamping Voltage @ IPP
I_T	Test Current
Irm	Leakage current at VRWM
Ірр	Peak pulse current
Co	Off-state Capacitance
CJ	Junction Capacitance

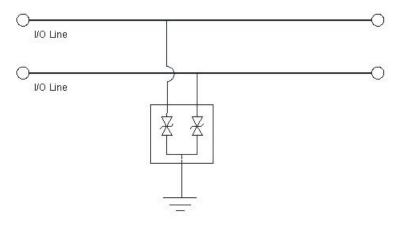


^{*}Other voltages may be available upon request.

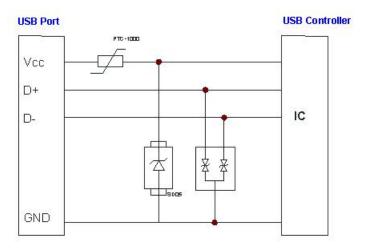

Typical electrical characterist applications

Pulse Waveform

Non-Repetitive Peak Pulse Power vs. Pulse Time



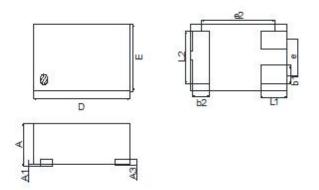
Power Derating Curve



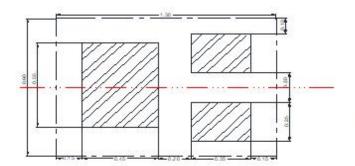
Typical applications

The ECENCAD5VBH is designed for the protection of up to two bidirectional data or signal lines from the damage caused by ESD and surge pulses. The device may be used on lines where the signal polarities are both, positive and negative with respect to ground.

Two I/O Lines Bi-direction Protection


Two I/O Lines Bi-direction Protection

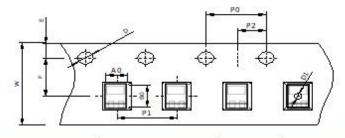
www.ecore-union.com 4 Rev1.0

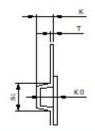

Package information

DFN1006-3L

Dim	Millime	neters
Dim	Min	Max
A	0.40	0.55
Al	0.01	0.10
A3	0.12	SREF
D	0.95	1.05
E	0.55	0.65
b1	0.10	0.20
b2	0.20	0.30
Ll	0.20	0.40
L2	0.40	0.60
el	0.30	0.40
e2	0.67:	SBSC

Pad Layout





Solder lands Occupied area

Dimensions in mm

DFN1006-3L Reel Dim

Package	Chip Size (mm)	Pocket Size B0×A0×K0(mm)	Tape Width	Reel Diameter	Quantity Per Reel	P0	Pl
DFN1006-3L	1.55×1.45×0.55	1.65×1.55×0.65	8mm	178mm(7")	10000	4mm	2mm
D0	D1	E	F	K	T	w	
1.5mm	1/25	1.75mm	3.5mm	0.60mm	0.3mm	8mm	