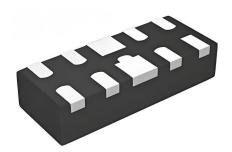


ECELCAH3V3U

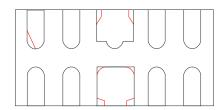

Ultra Low Capacitance Array for ESD Protection

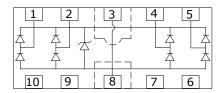
The ECELCAH3V3U provides a typical line to line capacitance of 0.08pF between I/O pins and low insertion loss up to 3GHz providing greater signal integrity making it ideally suited for HDMI applications, such as Digital TVs, DVD players, Computing, set-top boxes and MDDI applications in mobile computing devices.

It has been specifically designed to protect sensitive components which are connected to high-speed data and transmission lines from overvoltage caused by ESD(electrostatic discharge), CDE (Cable Discharge Events), and EFT (electrical fast transients).

Features

- Protects two or four I/O lines
- Low capacitance: 0.08pf Typical between I/O channel
- Working voltages: 3.3V
- Low leakage current
- Response Time is < 1 ns
- Meets MSL 1 Requirements
- SCR technology
- ROHS compliant


Main applications


- High Definition Multi-Media Interface (HDMI1.3/1.4/2.0)
- Digital Visual Interface (DVI)
- Display Port Interface
- Serial ATA
- PCI Express
- USB 1.1/2.0/3.0/3.1/OTG
- IEEE 1394 Firewire Ports
- Projection TV Monitors and Flat Panel Displays
- Notebook Computers
- Set Top Box
- Projection TV

Protection solution to meet

- IEC61000-4-2 (ESD) $\pm 18kV$ (air), $\pm 18kV$ (contact)
- IEC61000-4-4 (EFT) 40A (5/50ns)

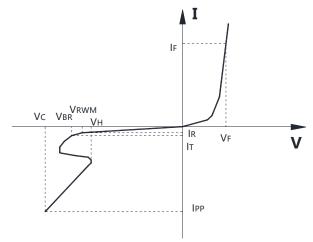
DFN2510

Ordering Information

Device	Marking	Qty per Reel	Reel Size
ECELCAH3V3U	3324P	3000	7 Inch

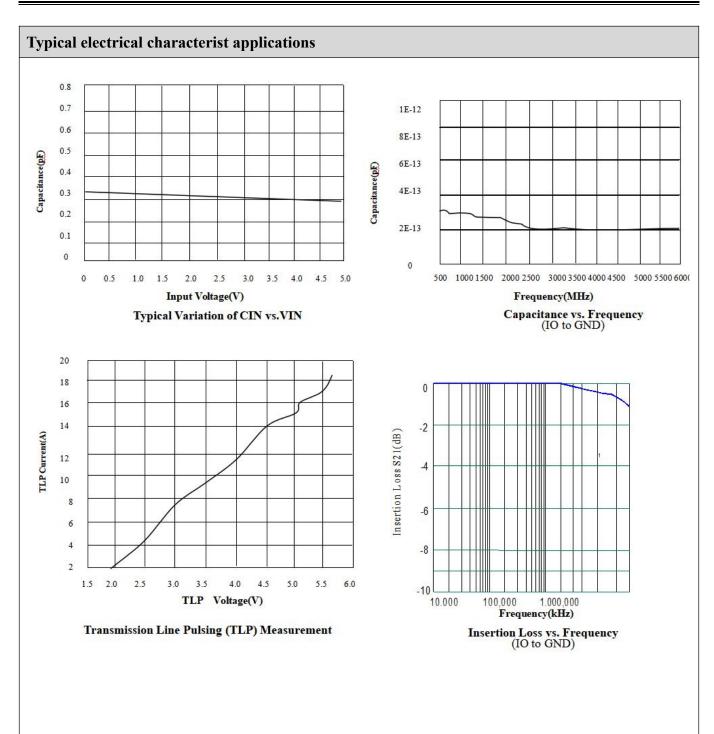
Maximum ratings (Tamb=25℃ Unless Otherwise Specified)				
Parameter	Symbol	Value	Unit	
ESD Rating per IEC61000-4-2: Contact		18	KV	
Air		18	K V	
Lead Soldering Temperature	$T_{ m L}$	260 (10 sec.)	$^{\circ}$	
Operating Temperature Range	Tı	-55 ∼ 150	$^{\circ}$	
Storage Temperature Range	Tstg	-55 ∼ 150	$^{\circ}$	

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.


1. Non-repetitive current pulse, per Figure 1.

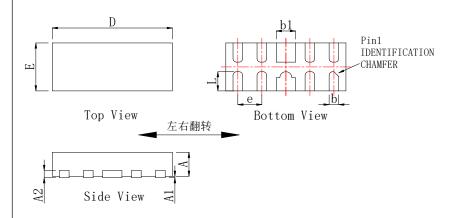
Electrical characteristics (Tamb=25°C Unless Otherwise Specified)							
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units	
$V_{\scriptscriptstyle RWM}$	Reverse Working Voltage	Any I/O to Ground			3.3	V	
$V_{\scriptscriptstyle BR}$	Reverse Breakdown Voltage	$I_T = 0.1 \text{mA},$	4.0			V	
$I_{\scriptscriptstyle R}$	Reverse Leakage Current	$V_{RWM} = 3.3V$,			1	μΑ	
$V_{\scriptscriptstyle F}$	Diode Forward Voltage	$I_F = 15 \text{mA}$		0.85	1.2	V	
V _h	Hold Current Voltage	$I_H = 10 \text{mA}$		1.85		V	
W	C1 ' V 1	$I_{PP} = 1A^{(1)},$			5.7	V	
V_c	Clamping Voltage	$I_{PP} = 12A^{(1)},$			11	V	
D	1	positive transient(TLP)		0.26		Ω	
R _{dyn}	dynamic resistance	negative transient(TLP)		0.28			
		$V_{IN} = 2.5V, f = 1MHz,$		0.00		pF	
C _J ⁽²⁾	Innetion Compaitones	between I/O pins	0.08		0.15		
	Junction Capacitance	V_{IN} = 2.5V, f = 1MHz,		0.4		E	
		any I/O pin to Ground		0.4	0.5	pF	

Notes:(1)Measurements performed using a 100ns Transmission Line Pulse(TLP) system.


(2) Junction capacitance is measured in V_R =0 V_r F=1MHz

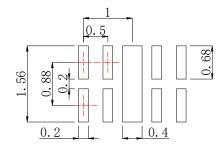
Symbol	Parameter		
$V_{\scriptscriptstyle \mathrm{RWM}}$	Working Peak Reverse Voltage		
$ m V_{\scriptscriptstyle BR}$	Breakdown Voltage @ IT		
V_C	Clamping Voltage @ Ipp100ns		
V C	Transmission Line Pulse(TLP)		
I_T	Test Current		
${ m I}_{\scriptscriptstyle { m RM}}$	Leakage current at VRWM		
I_{PP}	Peak pulse current		
Co	Off-state Capacitance		
C_{J}	Junction Capacitance		

^{*}Other voltages may be available upon request.

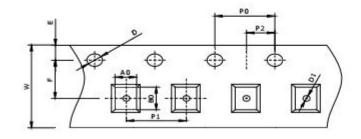

Package Information

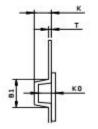
DFN2510

Mechanical Data


Case:DFN2510

Case Material: Molded Plastic. UL Flammability




DIM	Millimeters		
	Min	Max	
A	0.45	0.65	
A1	0.05REF		
A2	0.15REF		
b	0.15	0.25	
b1	0.30	0.50	
D	2.424	2.576	
E	0.924	1.076	
e	0.50REF		
L	0.30	0.45	

Recommended Pad outline

DFN2510 Reel Dim

Package	Chip Size	Pocket Size B0×A0×K0(mm)	Tape Width	Reel Diameter	Quantity Per Reel	PO	PI
DFN2510	2.50×1.00×0.60	2.70×1.20×0.80	8mm	178mm(7")	3000	4mm	4mm
D0	DI	E	F	К	Т	w	
1.5mm	0.2mm	1.75mm	3.5mm	0.65mm	0.2mm	8mm	