

ECELCAE5VU

Ultra Low Capacitance Array for ESD Protection

The ECELCAE5VU provides a typical line to line capacitance of 0.6pF and low insertion loss up to 3GHz providing greater signal integrity making it ideally suited for USB 2.0 applications, such as Digital TVs, DVD players, Computer, set-top boxes and MDDI applications in mobile computing devices.

It has been specifically designed to protect sensitive components which are connected to high-speed data and transmission lines from overvoltage caused by ESD(electrostatic discharge), CDE (Cable Discharge Events), and EFT (electrical fast transients).

Features

- Protects four I/O lines and one Vcc line
- Low capacitance
- Working voltages : 5V
- Low leakage current
- Response Time is < 1 ns
- Low capacitance (<1.2pF) for high-speed interfaces
- No insertion loss to 3.0GHz
- Solid-state silicon avalanche technology
- Meets MSL 1 Requirements
- ROHS compliant

6 5 4 GND EE 9 1

1.6 mm

DFN1616-6L

Main applications

- Digital Visual Interface (DVI)
- 10/100/1000 Ethernet
- USB 1.1/2.0/OTG
- IEEE 1394 Firewire Ports
- Projection TV Monitors and Flat Panel Displays
- Notebook Computers
- Set Top Box
- Projection TV

1/0 4 VCC I/O 3 6 5 4 1 2 3

1 3 4 6 6 1/0 1 1/0 2 1/0 3 1/0 4

Protection solution to meet

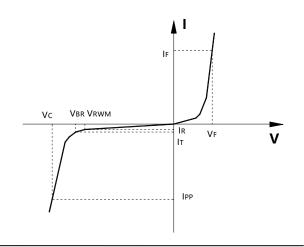
- IEC61000-4-2 (ESD) ± 15 kV (air), ± 8 kV (contact)
- IEC61000-4-4 (EFT) 40A (5/50ns)
- IEC61000-4-5 (Lightning) 5A (8/20μs)

Ordering Information

Device	Qty per Reel	Reel Size
ECELCAE5VU	3000	7 Inch

www.ecore-union.com 1 Rev2.0

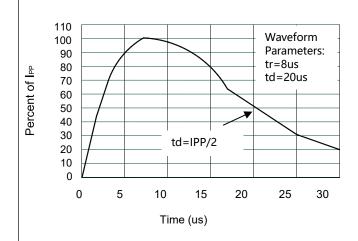
Maximum ratings (Tamb=25℃ Unless Otherwise Specified)			
Parameter	Symbol	Value	Unit
Peak Pulse Power (tp=8/20μs waveform)	P _{PPP}	150	Watts
Peak Pulse Current(tp=8/20μs waveform)	Ірр	5	A
ESD Rating per IEC61000-4-2: Contact		8	1/1/
Air		15	KV
Lead Soldering Temperature	$T_{\rm L}$	260 (10 sec.)	$^{\circ}$
Operating Temperature Range	Tı	- 55 ∼ 150	$^{\circ}$
Storage Temperature Range	Tstg	-55 ~ 150	$^{\circ}$ C

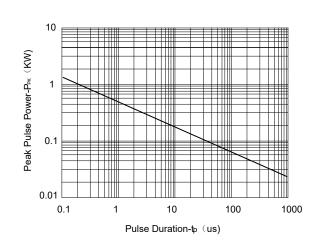

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

^{1.} Non-repetitive current pulse, per Figure 1.

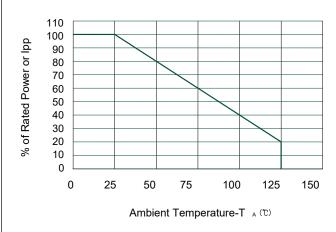
Electric	al characteristics (Tamb=2	5℃ Unless Otherwise Specifi	ed)			
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
V _{RWM}	Reverse Working Voltage	Any I/O to Ground			5.0	V
Van	VBR Reverse Breakdown Voltage	IT = 1 mA,	6.0			V
V BR		Any I/O to Ground	6.0			V
Ir	Daviana I calcaca Cumant	$V_{RWM} = 5V$,			1	
IR	Reverse Leakage Current	Any I/O to Ground			1	μΑ
VF	Diode Forward Voltage	IF = 15mA		0.85	1.2	V
		$I_{PP} = 1A$, $tp = 8/20 \mu s$,			15.5	V
1 7		any I/O pin to Ground			15.5	
Vc	Clamping Voltage	$I_{PP} = 5A$, $tp = 8/20 \mu s$,			20	V
		any I/O pin to Ground			30	v
I_{PP}	Peak Pulse Current	tp =8/20μs			5	A
		$V_R = 0V$, $f = 1MHz$,		0.6	0.8 pF	E
	Innation Compaiton	between I/O pins				pr
$C_{\rm J}$	Junction Capacitance	$V_R = 0V$, $f = 1MHz$,		1.0	1.2	pF
		any I/O pin to Ground				

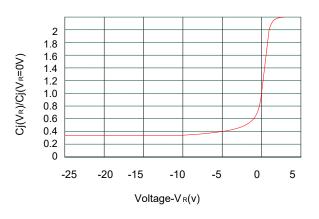
Junction capacitance is measured in VR=0V,F=1MHz


Symbol	Parameter
Vrwm	Working Peak Reverse Voltage
$ m V_{BR}$	Breakdown Voltage @ IT
$V_{\rm C}$	Clamping Voltage @ IPP
I_T	Test Current
Irm	Leakage current at VRWM
Ірр	Peak pulse current
Co	Off-state Capacitance
C _J	Junction Capacitance



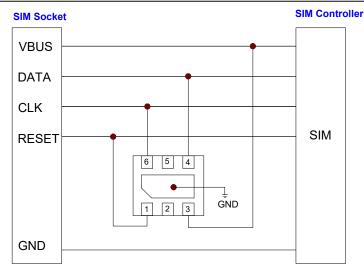
^{*}Other voltages may be available upon request.


Typical electrical characterist applications



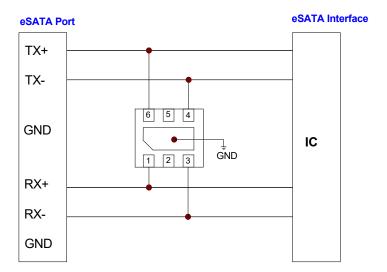
Pulse Waveform

Non-Repetitive Peak Pulse Power vs. Pulse Time



Power Derating Curve

Junction Capacitance vs. Reverse Voltage

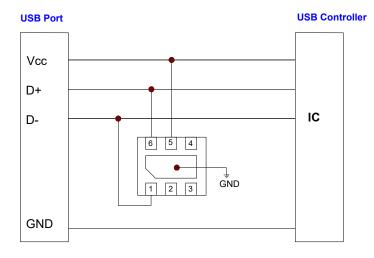

Typical applications

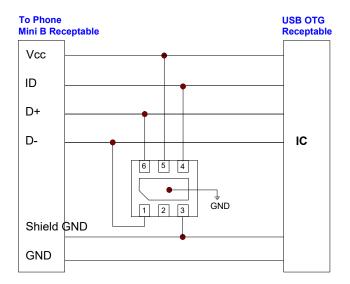
SIM protected solution

Considerations:

- The SIM (Subscriber Identification Module) card has 3 data lines that are low-speed and low-voltage
 - Given the low speed of the signals, the capacitance will not be a concern
- The low-voltage signal lines are best protected by a device which has a low standoff voltage or VRWM
- Protection of the 3 data lines is shown below (i.e. CLK, DATA, and RESET)

Considerations:


- eSATA is a subset of the SATA protocol that uses 2 differential pairs for communication
 - \bullet Four lines need to be protected per port (i.e. $TX\pm$ and $RX\pm)$
 - Currently eSATA is capable of running raw data rates of 1.5Gbps (Gen 1) and 3.0Gbps (Gen 2)
- These high bus speeds require very low capacitance devices to prevent signal degradation
- To maintain the line impedance the designer should avoid using 90° angles and vias


www.ecore-union.com 4 Rev2.0

Typical applications

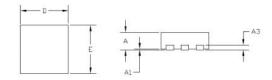
USB2.0 Protection

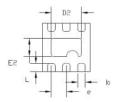
USB OTG Carkit Protection

Considerations:

- Each port can operate up to 480Mbps
 - The high data rate requires a low capacitance device to preserve signal integrity
- Requires 2 channels of data line protection per port (i.e. D±)
- A 4 channel device can be useful if protecting a USB stack of 2 ports to make the ESD footprint as small as possible
- VBUS can be protected by connecting it to the VCC pin on the diode array or by using a separate single channel device as previously shown

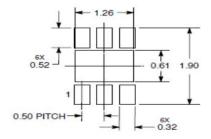
www.ecore-union.com 5 Rev2.0


Package Information


DFN1616-6L

Mechanical Data

Case:DFN1616-6L


Case Material: Molded Plastic. UL Flammability

DIM	Millimeters		Inches		
	Min	Max	Min	Max	
A	0.5	0.60	0.020	0.024	
A1		0.05		0.002	
A3	0.15REF		0.006REF		
b	0.20	0.30	0.008	0.012	
D	1.55	1.65	0.061	0.065	
E	1.55	1.65	0.061	0.065	
E2	0.50	0.7	0.020	0.027	
D2	0.90	1.10	0.035	0.043	
e	0.50BSC		0.020	BSC	
L	0.164	0.316	0.006	0.012	

Recommended Pad outline

